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Assay data are often fit by a nonlinear regression model incorporating
heterogeneity of variance, as in radioimmunoassay, for example. Typically,
the standard deviation of the response is taken to be proportional to a
heta
power 4 of the mean. There is considerable empirical evidence suggesting
! [ A
that for assays of a reasonable size, how one estimates the parameter/& does
not greatly affect how well one estimates the mean regression function. An
additional component of assay analysis is the estimation of auxillary

constructs such as the minimum detectable concentration, for which many

definitions exist; we focus on one such definition. The minimum detectable

[

concentration depends both on and the mean regression' function. We
compare three standard methods of estimating the parameter 9 (;ue to Rodbarc
(1978), Raab (1981a) and Carrcoll and Ruppert (1982b). When duplicate counts
are taken at each concentration. the first method is only 20% efficient
asymptotically in comparison to the third, and the resulting estimate of the
minimum detectable concentration is asymptotically 3.3 times more variable
for first than the third. Less dramatic results obtain for the second

estimator compared to the third; this estimator is still not efficient,

however. Simulation results and an example are supportive of the asymptotic
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1. Introduction

The analysis of assay data has long been an important problem in clinica.

' chemistry and the biological sciences; see, for example, Finney (1964} and
Oppenheimer, et al. (1983). The most common method of analysis is to fit a
. . noniinear regression model to the data. Much recent work suggests that these
data can be markedly heteroscedastic: in radioimmunoassay, for example, this
characteristic has been observed repeatedly and incorporated into the analysis

as discussed by Finney (1976). Rodbard (1978), Tiede and Pagano (1979) and

Raab (1981a.b) and Butt (1984). Such analyses are for the most part special

cases of the heteroscedastic nonlinear regression model. Specifically, we
observe independent counts Yi' at concentrations xi for i = 1,....N and j =
1....Mi with mean and variances given by
{1.1) EY = = f(x..8) : var(Y,.) = {og(x..B 9)}2

: ij ~Hi i ' ij glx,; P, '

wiere B is the unknown regression parameter vector of length p and 8 1is the
structural variance parameter. A fairly standard model for the mean in a

radioimmunoassay is the four parameter logistic model

(1.2) £(x.8) =B, + (B, - B)/[1 - exp{p, (log x - B)}].

Almost without exception, the variances have been modeled as functions of the

mean response, usually either as a quadratic or as a power of the mean, e.g..

(1.3) oi = Standard deviation of Yij = ag(xi,p,e) = of(xi.p)e

The fundamental contribution of Rodbard and other workers has been to




[3%]

incorporate the heterogeneity into the analysis; the resuit of their
contribution has been a great improvement in the quality of statistical
anaiysis.

Methods of estimating 8 and 8 are discussed in Section 2. The most common
method of estimating g is generalized least squares. By varjous devices, one
forms estimates ;i of the variances ci and then estimates g by weighted least
squares. As discussed by Jobson and Fuller (1980) and Carroll and Ruppert

{1982b), under gquite general circumstances for large enough sample sizes how

one estimates the variance does not matter, and B8 is asymptotically normally

distributed with mean 8 and variance (OZ/NS)SG_I, where Ns is the total sample
size and
-1 _N M. T 2
; . - - ,
{(1.4) S = Vg £i-1%51 {fp(xi.p)fp(xi,ﬂ) }'g (xi.,B.G).
and fp the derivative of f with respect to S. It has been shown that for

estimation of B, how one estimates the variance function, in particular the
parameter @, has only a second order effect asymptotically, see., for example,
Rothenberg (1964). The general asymptotic result (1.4) can be optimistic, but
in our experience for RIA and ELISA assays, the asymptotics are often rather
reasonable.

what the previous discussion suggests is that if our only interest is to
estimate B8, then in many assays the method of estimating the variance function
may not be crucial. However, the assay problem does not always stop with
estimating B, but rather also addresses issues of calibration. These issues
include confidence intervals for a true x, given a new Y,. the classic

calibration problem. Also of interest is determining the sensitivity of the

assay using such concepts as the minimum detectable concentration of Rodbard
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(1978) and the critical level, detection level and determination limit of
Oppenheimer, et al. (1983). A unique feature of these calibration problems is
that the efficiency of estimation is essentia!ly determined by how well one
estimates the variance parameter 8; the purpose of this paper is to justify
this claim.

To the best of our knowledge, our paper is one of the first which shows
explicitly that how one estimates the structural variance parameter 9 can be
important in determining the behavior of estimates of interesting quantities.
rar from being only a nuisance parameter as it is often thought to be, 8 is a
quantity which has an important role in the analysis of calibration and
prediction problems. In addition, @ can be important in itself, as in for
example off line quality control, see Box and Meyer (1986). In this latter
application, one might want to find the levels of x which give minimum variance
subject to a constraint on the mean.

Our general qualitative conclusion is that how well one estimates 8 really
matters. Instead of pursuing a fully general theory, we focus on the
determination of minimum detectable concentration. There s no unique
definition of this concept, and for illustration we pick one of the possible

candidates.

Definition. Let Y(x.M) be the mean response based on M replicates at
concentration level x, taken independently of the calibration data set {Yij)A
Let f£(0.8) be the expected response at zero concentration based on the

cailibration data set. The minimum detectable concentration xc at level (1-a)

is the smallest concentration x for which

(1.3) Pri{¥(x.M) > f(0,8)} > 1 - &a. o
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Qualitatively, the minimum detectable concentration 1is arrived at as

Y
“ﬁ illustrated in Figure 1. One first constructs the estimated regression

\ X .
‘: function f(x.8)., and then attaches to it an estimated lower (1-a) confidence

¢

' iine for the new response Y(x.M) at concentration x based on M replicates.

: Starting from the estimated zero concentration mean f(O,A). one does a standard

§: calibration by drawing a horizontal line wuntil it intersects the lower

‘ confidence interval, the value of x at which this intersection occurs being the
f& minimum detectable concentration. In Figure 1, we illustrate why getting a
Aw good handle on the variance function is important. Assuming as is natural that

f the variance is smallest where the mean count is smallest, we see that the
‘E prediction interval based on an unweighted analysis is much too conservative

vz for low concentrations. This translates immediately into a large bias in the

| estimated minimum detectable concentration. Even if the heterogeneity of ‘
fﬁ variance is taken into account, Figure 1 makes clear that a poor estimate of @ 'i
Y ‘
fg can have considerable impact on the estimated minimum detectable concentration. ?

We now outline the standard method for estimating the minimum detectable

e

?: concentration. To be more precise and follow the outline given in the
:ﬁ preceeding paragraph, one would replace the t-percentage point to follow with

' an asymptotically negligible correction based on the limit distribution of the
15 estimates of (8.8,0). This program has not been followed in practice since the
x; irast 1imit distribution has been unknown, and in any case the effect |is
‘b

. asymptotically unimportant. If t(d,Ns-p) is the (I«u)th percentile of the
:3 t-distribution with Ns—p degrees of freedom, the usual estimate ;c of xC )
)

U
Eﬂ? satisfies

(1 6) {f(;r./;) - f(0.83)° - {t(a,.\'s-—p))z{c;zgz(;(c,/;,é)/M - var{£(0.8)1}.
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where var{f(0.,8)] is an estimate of the variance of f(0,8) and 02 is the usual

mean squared error from the weighted fit:
S 2.-28 -
{Y.. - f(xi.p)} £ {(x,.B).

:n Section 2 of this paper, we discuss three standard methods for
estimaling the variance parameter @. Under relatively general conditions. two
of these can be quite a bit less efficient than the third, and we discuss in
Section 3 how this difference translates theoretically to the minimum

detectable concentration problem. In Sections 4 and 3, we present a small

)

.
.

-
.

-
v

Monte-Carlo study and an example to illustrate the results. The key conclusion

ne
B

C’.'.l.

is that how one estimates 6 can affect the relative efficiency of estimated

P Y
it i

quantities useful in the calibration of assays.

2. Methods of estimating mean and variance parameters

The problem of estimating 8 in models (1.1) and (1.3) has been discussed
in many places in the literature. A nice introduction is given by Judge. et
al. (1933, Chapter 11). More specialized and formal treatments include those
by Rodbard {(1978), Jobson and Fuller (1980), Raab (1981a), Carroll and Ruppert
(1982b) and Davidian and Carroll (1986), although these only represent a

sampiing of the possible selection. We focus our attention on three methods

with quite different motivations. For simplicity, we will discuss cnly the

. case of equal replication Mi = M > 2. The first two methods require some
5* ; ; !
g replication. ‘
b !
‘b :
L0 1
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2.. Log-linearized estimation

Model (1.3) implies upon taking liogarithms that the jog standard deviation
is linear in the 1log mean with slope 6. Letting (Vi_.siz) be the within
concentration sample means and variances, this suggests that one estimate & as
the slope from regressing log Si on log ?i-' If we denote this estimate as

Q'L' Rodbard (1978) suggests forming estimated standard deviations as the
L

sample mean to the power @LL,and then applying weighted least squares to

estimate 8.

Raab (1981a) suggests a method for estimating 6 wusing normal theory
maximum 1iikelihood but without making any assumptions about the form of the
mean function. Raab assumes independence and proposes estimation of 6 by joint
maximization of the "modified” normal likelihood

N 2 -1)
7y_ (emo’gu 0"

m 2 2 .
expl-Z, (Y. .-u. )" (20°giu .0},

j=1 i3 "1

in the parameters ¢, §, pl,....pV, where we have written g(~x .3.8) as g(pi‘B\

to emphasize the dependence of the variance function on the mean response.  The
e . . 2 . . . .

modification serves to make the estimator of o unbiased Fstimation of 8 may

now proceed via weighted least squares in a fashion analagous to the

log-linearized method.
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2.3 Pseudo-likelihood

For given &, the pseudo-likelihood estimator of 8 1is the normal theory
maximum likelihood estimate, maximizing
N M

2 -z 6)}
(2.2) i=lzj log{g(x ﬂ )

-1.N

- (N.2)log[N z {Y (xi,/;))zg(xi.ﬂ.e)_gl.

1 j 1
see Carroll and Ruppert (1982b). One can devise many ways to estimate 8 and g

jointly. For example, one can

(i} Set A = unweighted least squares;

(ii) Estimate & by pseudo-likelihood;

{iil) Form estimated variances gg(xi.ﬁ.s):
(iv) Re-estimate B by weighted least squares:

(v} Iterate (ii) - (iv) one or more times.

The number of cycies € of this algorithm is the number of times one hits step

{iv). One can do step (1i) by direct maximization or by weighted least squares
as in Davidian and Carroll (1986). 1
A key point to note is that pseudo-iikelihood requires no replication and

hence easily copes with unequal replication.

2.4 QOther methods

Various other methods have been proposed; see, for example. Jobson and

R -’.:.-_.".'t.‘-'.f . - -
v'\_-_-._( q - - '\' o '.." ~ ".'.. e T g e e
W }'\-" (' 5-\1\. \x.."- A.“u":‘s.L o’ -:1.’..._‘.\..
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pﬁ Fuller (1980) and Box and Hii: (1974). Robust variance function estimation
(0
LX
methods have also been developed, see Carroll and Ruppert (1982b) and Giltinan.
K)
‘ﬁ Carroll and Ruppert (1986).
D .
o A final method of jointly estimating (8,9) is normal theory maximum
'y
likelihood. There are important issues of robustness which complicate routire .
A
ﬁ\ use of this method. see McCullagh (1983). Carroll and Ruppert (1982a) and
3]
)
) Davidian and Carroll (1986) for further discussion. For assay data.
pseudo-likelihood and maximum likelihood estimates of 6 have similar asymptotic
-
M behavior, and we will use the former largely for its ease of calculation.
7

%

-
2 :
The asymptotic theory of the iog-linearized estimator eLL is complicated
%: because regressing log Si on log Vi- is not a standard linear regression -
'%; problem. Likewise, the asymptotic theory for the modified maximum likelihood
. estimator QWWL is complicated because the dimension of the parameter space
- A
:V increases with NXN. Both of these problems are nonlinear functional
‘.\
: errors-1n-variables problems of kind addressed by Wolter and Fuller (1982).
4
Amemiya and Fuller (1985) and Stefanski and Carroll (1983). The error in
B - - - - !
tﬁ estimating Hi by ?i- in gLL or by the joint estimator pi in gMML causes these |
:; estimators to be biased asymptotically. This bias is typically negligible, o
%)
e

because in most of the assays we have seen the parameter ¢ in (1.1) is quite

K -
AE small. Thus, empirically it makes sense to define an asymptotic theory where
'
) the sample size NS = NM becomes large and ¢ simultaneously is small. Because
.
4

in most assays the number of replicates M is small, we shall let N =+ % and o =
L/
% 0 while keeping M fixed: Raab (!981a) suggests that M = 2 is the most common
L '.’
J.:
]
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It is important for the reader to understand that letting N - % and o - 0O

simultaneously 1is dictated by the problems of studying the log-linearized

estimator eLL and the modified maximum likelihood estimator QWWL: the

pseudo-likelihood estimator & has a routine asymptotic theory even for fixed

PL
c.
The asymptotic distribution of these estimates of 8 can be obtained from

the general theory of Davidian and Carroll (1986). Define

[ s 9 » P
€y - {YU - L(xi,p)), {af(xi.ﬁ) ). vy = log f(x,.8),
2 LM -2 2 . SRS S =2
q; = {(M-1) Zizl(eij ei.) }, av = 11m_\;_‘°° (N-1) zi=1(vi v) .

Theorem 1. As X =+ o« and 0 - 0 simultaneously and Nl/%o = €{1), if the random

variables {eij} are symmetric and independent and identically distributed. then

172 - _ £ , 2

N (9LL 6) - N(0. var{log qi}/(4ov)).
12,7 £ ., 2., 2

N wmﬂ 9)»km.vm%%h(wvn.

1.2 £ 2 | iwal

N (9PL 8) - N(O, var(eij),(4Mcv)). o

Under these asymptotics., the symmetry condition is necessary to ensure that the

and 6 have zero mean; symmetry is

. : : : ]
asymptotic distributions of LL MML

unnecessary for the result for 8 Sadler and Smith (1985) note that the

PL’
estimator obtained by replacing yi by ?i- in (2.1) and maximizing in 02 and 6

is wvirtuaily indistinguishable in practice from the full modified maximum




sikelihood estimator of 9. It can be shown that these two estimators are
asymptotically equivalent urnder the above asymptotics and that this second
estimator 1is equivalent to the pseudo-likelihood estimator with f(xi.p)

replaced everywhere by ?i- in (2.2); thus, as an approximation to var one
could compute the pseudo-likelihood estimator using Vi_.
From Theorem 1, the asymptotic relative efficiencies of the log-linearized

method and the modified maximum likelihood method reiative to pseudo-likelihood

can be computed. Note that

(3.1) var(qf) - var(e  )/M + 2/{M(M-1))
so that GWML has uniformly larger asymptotic variance than gPL for all M > 2
regardless of the distribution of the (eij}.

We have tabulated the relative efficiencies of OLL and OMML to ePL for

various numbers of replications M, assuming normally distributed data.

Asymptotic relative efficiencies of estimators of 8 for small o

- - -~ - - -

4 8 Loy Sypi—to-fp St By
2 0.203 0.500 0.405
3 0.405 0.667 0.608
4 0.535 0.750 0.713
9 0.783 0.889 0.881
10 0.804 0.900 0.893
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In our experience, these numbers slightly exaggerate the inefficiency of &

LL
relative to pseudo-likelihood, especially when the assay is rather small. For
duplicates M = 2, in two assay simulations, we have found that the variance

efficiency of the log-linearized method was 0.35 and 0.31; the former number is

reported in the next section. The asymptotic relative efficiencies of BLr
A

relative to GMML agree quite we!]l with the efficiencies of 39%, 62% and 77% and
39%. 64% and 74% for M = 2, 3 and 4 reported by Raab (1981a) and Sadler and
Smith (1983). respectively, in two Monte-Carlo studies. While modified maximum
likelihood represents an improvement over the log-linearized method, the theory
clearly points to the inefficiency of both the log-linearized and modified
maximum likelihood methods when the number of replicates is small and the data
are nearly normally distributed.

For the minimum detectable concentration, note that in (1.6) the term
v;r{f(o.é)) is of the order (.\'M)_1 and is hence rather small relative to all
the other terms. Of course, for normally distributed data. the solution to
(1.6) is the quantity x:. where

(3.2) - (2@ %% (x_pM - (1<) - £10.8))°

. t . . . .
ans z(«) is the (1 - a) h percentile point of the standard normal distribution.
Here is the major result, the technical details for which are given in the

appendix. Define

. SaioN
(3.3) d0 = log f(0.,8) - llmN_‘°° N Zi=1 log f(xi.p).
[heorem 2. Let xC(LL), xClMML) and xc(PL) denote the estimated minimum

detectable concentrations using the log-linearized estimate gLL' the modified

e v e e
O IIIAEN S P
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i maximum iikelihood estimate & and the pseudo-likelihood estimate 6

g VML PL

- respectively. Then under regularity conditions. there is a constant Ao and a

' sequence b, for which

n By N 2 2, .2,,.2
(3.4) b A N (( {LL) xc)fo - N(O, var(eij) var(log qi)dOM'cv ),

< 1/2 7 LN . 2 . 2, 2., 2 !
{3.3) bX A0 N (xC(MML) xc),o - N(O, var(eij) var(qi)dOM cV ),
1/2,° * £ 2 2
) q - ‘g S0 - /
(3.6) bx AO N (xC(PL) xc),o N(O, var(e ){1 do ov} ). o

- A

From (3.1), the asymptotic relative efficiency of the modified maximum

likelihood estimate to minimum detectable concentration relative to the

g
1
Lr
. pseudo-likelihood estimate is .
¥
: 2 2
‘ (3.7) var(e )(o -d )/{var(e jIlyrdg) = 2dg/(M-1)) )
’
y
]
. which is less than 1 for all M regardless of the value of var(eij). Similarly,
)
! the asymptotic relative efficiency of the log-linearized estimate of minimum
)
f detectable concentration to the pseudo-likelihood estimate is
\
{

; |
X 2 2 2 2 2 2 2
1} (3.8) var(eij)(cvodo)/{ovvar(eij) Mdovar(log qi)}.
A
5 It follows from Theorem 1 and (3.7) and (3.8) that the ordering in efficiency
0]
;4 of estimated minimum detectable concentration is the same as the ordering for
4
L estimating & and thus will favor pseudo-likelihood for normally distributed

data in the case of the log-linearized estimator and for all distributions in

the case of the modified maximum likelihood method. For distributions other
o
[}
X
1SR —'ﬂft(n(%'ﬂ_\r‘( ‘a7, \* AN ey "“a’x'x’\“ A T T e T T T AT
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than normal. calculations with other symmetric distributions such as double

exponential and various contaminated normal distributions show very few cases

where 6 is more efficient than 6 __ . see Davidian (1986). The numerical

LL PL
efficiencies depend on the logarithm of the true means through dg and 03. For

example, in the simulation discussed in the next section, the asymptotic

relative efficiency of the log-linearized estimate is 27% for M = 2 and 63% for

The asymplotic theory thus suggests that inefficiencies in estimating the
variance parameter 6 translate into inefficiencies for estimating the minimum

delectlabie concentration.

4. A simulation

To check the qualitative nature of the asymptotic theory, we ran a small
simulation. We restrict our focus here to the log-linearized method and
pseudo-likelihood.

The responses Yij were normally distributed with mean and variance
satisfying (1.2), (1.3), where pl = 29.5274, p2 = 1.8864, p3 = 1.5793, p4 =
1.0022, ¢ = 0.7 and o =.0872. The 23 concentrations chosen are given in Table
4. We studied the case M = 2 or duplicates and M = 4 or quadruplicates. For
each situation, there were 300 simulated data sets. A limited second
simulation was run with the larger value ¢ = 0.17, but there did not appear to
be significant qualitative differences from the case reported here.

The estimators chosen were unweighted least squares for g, the Rodbard
log-linearized method and the pseudo-likelihood/generalized least squares

combination which we report only for ¢ = 1 and 2 cycles of the algorithm. The
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methods of estimating the minimum detectable concentration are as discussed in
Section 1. The estimates of & were constrained to lie in the interval 0 ¢ & ¢
1.50.

In Table 1, we compare the estimators of 8 on the basis 0of bias and
variance. The biases are large relative to the standard error, so that
mean-squared error comparisons are artificial and dramatic. The bias in the
pseudo-likelihond estimate of 8 when doing only ¢ = 1 cycles of the algorithm
has been observed by us in other problems. One sees here that the effect of
doubling the replicates from two to four for a given set of concentrations
improves the Monte-Carlo efficiency of the log-linearized estimate of & from
353% to 38%, compared to the theoretical asymptotic increase from 20% to 34%.
This example indicates that pseudo-likelihood estimation of @ can in some

ircumstances be a considerable improvement over the log-linearized method.

For the minimum detectable concentration we chose a = 0.05. For all of
the methods used in the study, the probability requirement (1.3) was easily
satisfied:; rather than 93% exceedance probability, every case was more than
97%. The mean values of the minimum detectable concentrations are reported in
Table 2. with variances given in Table 3. Note that in both of these tables,
we give results for the case that @ is known as well as estimated. The
relatively poor behavior of unweighted least squares is evident. To quote from
Oppenheimer, et al. (1983): "Rather dramatic differences have been observed
depending on whether a valid weighted or inappropriate unweighted analysis is
used.” When the variance parameier 8 is known, there is little difference
between any of the weighted methods.

When 8 is unknown., there are raither large proportional differences. The
figures in Table 4 show that the mean minimum detectable concentration for the

iog-linearized method is 10% larger than for the pseudo-likelihood method based

«
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on ¢ = 2 cycles; whether the raw numerical difference is of any practical
consequence will depend on the context.
For M = 2 replicates, the pseudo-likelihood estimate of minimum detectable
conentration with unknown 6 has mean 3.934 X 10_2 and standard deviation 0.05 x
y 10_4; the corresponding figures for M = 4 are 2.722 x 10-2 and 0.028 x IU’4.
Proportionately, when 6 is unknown, the method of estimating it seems to have
important consequences for the estimate of minimum detectable concentraticn.
particularly in the variability of the estimate. For the case of duplicates.
the Monte-Carlo variance of pseudo-likelihood is only 37% as large as that
based on the 1log-linearized estimate, while the asymptotics suggest 27%,
increasing to 71% and 63% respectively for quadruplicates.
The point here is that the relative efficiency of the estimated minimum
. detectable concentration can be affected by the algorithm used to estimate the

variance parameter 9.

S. _An example

Differences among the three estimators of 8 and the subsequent estimators
of minimum detectable concentration which are reminiscent of the qualitative
implications of the asymptotic theory and simulation can be seen in the
following example. The data are from a radioimmunoassay and are presented in
Table 4. The analysis presented here is for illustrative purposes only: we do
not claim to be analyzing these data fully. Our aim is to exhibit the fact
that the three methods of analysis considered in this paper can lead to

nontrivially different results.

We assumed in all cases the model (1.2) and (1.3). For the full data set




and reduced data sels considering all possible permutations of duplicates
(except one set for which an S? = 0, complicating the application of the
iog-iinearized method). we computed the estimates of 9, 02 and xC using the
pseudo-likelihood and log-linearized methods and the estimate of Sadler and
Smith (1983) as described in Section 3 in place of the more computationally
difficult modified maximum likelihood estimate. We also computed the estimate
of minimum detectable concentration based on ordinary least squares. The
results are given in Table 3.

An investigation of both the full and reduced data sets suggests that
there are no massive outliers and that design points 1, 22 and 23 are possible
high leverage points. For our purposes of illustration we do not pursue this
point; see Davidian and Carroll (1986) for discussion on accounting for
leverage in estimation of 8.

The results of Table 5 show that the three estimates can vary greatly. As

a crude measure of this, consider the means and standard deviations of 5 and ;c

for the five data sets obtained by considering duplicates (ignoring the fact

thal these data sets are not strictly independent). Below we list "relative
efficiencies” for the estimators based on these crude measures:

" iv ici jes" st 9 d

for data in example when M =2

LL to PL MML to PL LL to MML
8 .222 .351 .632
X 529 .659 .802

Qualitatively, the estimates exhibit the type of behavior predicted by the




asymptotic theory: quantitatively, the values compare favorably with what the
theory would predict given the crudity of the comparison.
This example shows that there can be wide differences among the various
estimation methods for 8 and minimum detectable concentration in application
. and that the qualitative way in which the differences manifest themselves is

predicted by the asymptotic theory of Section 3.

6. Incorporating unknowns and standards

In many assays, along with the known standards {Yij'xi} there is an
* *
additional set {Yi*) of proportional size at unknown concentrations {xi}. i =
J

IL...X L o= 1,....Mi. It is common to assume that these unknowns satisfy

* * ]
(6.1) Standard Deviations (Yij) = g,(E Yij) .

The power of the log-linearized or modified likelihood methods is that they can
incorporate the responses at unknown concentrations to obtain a better es:iimate
of @; pseudo-likelihood and other similar techniques cannot easily incorporate
this information because they rely on knowing the concentrations {x:}. A
simple way to improve pseudo-likelihood to take into account the unknowns is to

incorporate the additional information about the variances in the unknowns by

exploiting an estimator that does not depend on the form of the mean response.
For the exposition here, consider the log-iinearized estimator; we could ‘
equally well employ the same idea using the modified maximum likelihood

estimator. Let 9” and 9g u denote the log-linearized estimates of 6 based on

the unknowns aloue or the full data respectively, and let GPL denote the
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:&,; pseudo-likelihood estimate based on the standards alone. Let Si denote the
o variance estimate of 9u produced by the linear least squares program and let
W
T -
lﬁ“ S2 he the estimated variance of 8__, where following Theorem 1
155 PL PL
1
.
LA &
) . ( sample variance of )
[\ standardized squared residuals r,
) 2 _ (gx ! ij
,\.' S - (4;\ ) ’
s PL S . .
K (sample variance of log predicted }
e values log f(x,.B8)
LA 4
2 .
’ .= Y., - f(x,, ! ., .
b vy (Vg - E(xA)/ (et (x,.8))
.‘»o'
l.:'.
o . Then a weighted estimate of 8 is simply
e
-
S0
N
SN
N N - - 2 2 2
- 6. 8 = wo - -w)od , = ! - ;
X (6.2) pp ~ (17W)8 . w =S /(SE -85 )
W
L - -
.}}, we prefer to replace Gu by GS u in (6.2). The weighted estimate (6.2) will
J 5i ’ .
N, improve upon the log-linearized estimate 9S 4 based on all the data, although
oy the degree of improvement will be smaller than that found in Sections 3 or 4.
2
b : For example, if there are exactly as many unknowns as standards and duplicates
‘ L]
\ ~
o0 are used, then 9S a has asymptotic relative efficiency of 34% versus 20% when
LR 1 ’
S only standards are available.
oS
oy
oy
Yo
d-'«
el
¥ 7. Discussion
L
P
W
'i*: We have addressed the general issue of estimating calibration quantities
in assays which exhibit large amounts of heterogeneity. We have shown that not
J
’i{ weighting at all leads to large decreases in the efficiency of analysis. Even
)‘\
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when weighting is used, we have shown that changes in reiative efficiency ovcur
depending on the method of estimating the variances. especially the parameter &
in (1.3). The key point is that while for estimation of B the effect of how
one estimates the variance function is only second order. for estimation of

. other quantities such as minimum detectable concentration, the effect is first

We have had success using the idea of pseude-likelihood in Carroll and
Ruppert (1982b):. this method applies in general heteroscedastic models and is
easy to compute as shown in the appendix. although the reader shou!d be aware
Jhat it is not robust against outliers.

One can also consider data transformation rather than weighting. The

transform-both-sides idea in Carroll and Ruppert (1984) applies to the assay

problem.
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Appendix

The analysis of the minimum detectable concentration is complicated by the

behavior of the derivative of f{x,8) with respect to g at x=0, especially for

*

the standard model (1.2). We will write f(x.8) = h(g.,8). where . = ¢€(x,8), ¢

" -
= €(xc.p) and qc = f(xc,p). In the model (1.2), nn = £(x,8) = exp(/}4 log x).
We assume throughout that f(0,8) > 0, and that all functions are sufficiently

smooth. Assume further that
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(A.2) a/3n h(0.8) = hn(o,p) #0
{A.3) €p(0.p) = 0
{A.4) If wo 0 and v s a random variable such that
p

£{v.B)/€(w,8) — 1, then

p
sup{ | eq(av~(1«a)w,p)’eq(w,p) - 1] for 0¢a¢l } —= 0

These assumptions are satisfied for the model (1.2) if p4 > 0.
We need the following results. The proofs of Lemmas A.2 and A.3 will be

(z{a))?

at the end of the appendix. Let c

Lemma A.1 As o - 0 for £(0,8) > O,

(c/m)226% (0.8)(a/0m n(o.8)) L.

=3
1
o}
Y
)
&
)
o
t

*
Proof: A Taylor series expansion of (3.2) in ”c and around zero. O

1/2

- *
Lemma A.2 Assume that as N =+ ®©, ¢ =+ 0, (qc - qc) = Up(cN ). Define

A, = 2¥a_(3/3n h(0.8))%/(ct®(0.8)).

Then as N = ®, ¢ » 0, if Nl/z(e -8) = Cp(l). we have the asymptotic expansion

(A.3) A Vl/z . * /
.5 ) (nc Oc) c

o~ v -
= 82%6% L 6%) 0% - 2(log £(0.8)) N %8 - 6) - e (1. O

fy

Lemma A.3 Consider Lemma A.2. Then
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(.\’M)1 2(0“ - 02)/02
-1/2.N M 2 — 1.2~
= v . s - N - 8 - [ :
(NM) zl=12j=1(€13 1) 2v{NM) (e ) rp(l) ‘
. 1.2 ’
so that if Ao =M Al'
- ‘
’
120 * '
22 _ y .
AO.\ (!7C OC) o ¢
ey c172.8 M 2 /2 0 o .
= (NM) zi=1zj=1(eij 1) + 2d0(NM) (0-0) ap(l).
'
‘
where dO is defined in (3.3). @
'
¢
§
o - AP /2 *
Proposition 1 : The iimit results (3.4) - (3.6) hold for A0 N (qc-qc)/o,
where qc = Oc(u;). OC(MML) or nC(PL). 3
Proof of Proposjtjon 1 : From Davidian and Carroll (1986}, using Theorem :. we ,
) have that
1/2 0 _ -1/2 _N 2 2 = _
N (BLL 8) = (1/2) N Zl 1 {log qi E(log qi)) (\i v) 0p(1) ; :
ds2,° _ 1/2 2 - ) ,
\Y (OMML -8) = (1/2) X { E(qi)} (vi v) opfll ,
2, -1/2 -1 .\' A | 2 -
-~ = / — T _— M -
(GPL 6) (1/2) N M Zl lzj_l (eij 1) | i v) np(l)
so that by Lemmas A.1 - A.3 and equation (A.5). we have
)
AOV (0 (PL) - 0 )’0 \
1/2 N M 2 - .2
= (NM) z l}:j L i {1 - do("i - v)/ov) Op(l).
which with the central limit theorem gives the same limit distribution as in
(3.6). We also have that
{
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o 172 n e - nwy 12N Mo 2
,52‘ Aol\ (t7 (LL) !7 )/ (NM) zi=1zj=1(€ij 1)
’ 1,2 ~1/25 \1 - 2,2
iy do 1 1(v v)log ql./c:V cp(l)
bt
3 12, ° * -1/2_N M 2
k] ‘. JML - /O: A z. z. €., -
ﬁ AGNT (g (ML) - g ) (NM) i1 J=1( i3 1)
/2 ~1/2 '\ —_ 2,2
[N - -V . - ¢ .
,‘:‘ﬁ% don 21 1(v )q1/°v p(1)
RF)
)
§
ﬁ.:$ Simple central limit theorem calculations yield the same limit distribution as
e in {3.4) and (3.3). o]
o
)
3:, ‘

&l -

:Q::! Bemark: Result (3.5) is based on ¢ obtained from the residuals of the final

A

" fit of the mean response function as for the log-linearized method and
4\:‘_ pseudo-!ixkelihood, so that Lemma A.3 holds. The modified maximum 1likelihood
i L]
l-‘ f method also provides a joint estimate of o along with the estimate of 8. If
[

) one considers this estiwator in place of ¢ in Lemma A.3, it can be shown that
‘{ﬂ'} the resulting estimator of minimal detectable concentration has even larger
s

oo
~*':'-P‘ asymptotic variance than that in (3.5). For reasons of space we do not prove
e this. but it certainly has interesting implications for practice.
1.' .
o
e -
.‘: Proof of Theorem 2 : By (A.5), for any of the estimators xc, since n = €(x,B),
ot
we have the limit result that for some 4,
)
AR
o
A 1/2 - * ¢

) (A.6) N { €(xc./3) - €(xc.p) }/o - N(0.4).

<4 : .

S Thus. for v between x_ and x_, defining

SN C c c
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' w' = \'1/2 4 (x* B) (;c - ‘{*) / g, we have ;
G N x ¢’ c ‘¢ 77 ’ j
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W x(Vc'ﬂ) 'x(xc'ﬁ) - N(0.4).,

where €‘(v.ﬁ) is the derivative of the first component of #(v.8). It thus

suffices through (A.4) to prove that

%
PR S Hxp) — 1.

* *
3ut this follows from (A.6) since qc/o = e(xc,p)/c - ac. see Lemma A.1. The

result now follows from Propostion 1. O
Proof of Lemma A.2: By a series of Taylor expansions and using Lemma A.1,

(A.7) xl’/z{hmc.p) - 1(0.8)}% /62

Zinin_.p) - n(o.p)se% - cp<x‘1/2)

*
N2 hw_p) - nio.p)?ed

* -~ -
- 2(hin .p) - h(o.p)(3/en hin. . eIN" 27 - n))/0® - o (y 1’2,

*®
x'2(hia_ 8 - h(0.5))%/0°

-2, mﬁmru0pn21/2 —n:V02+0pU)

x®
- ¥ 2(mg .8 - neo.p)2se°
201/2 0 _ %
- 2a (a/27 h(0.8) N g - g )/0 -6 (1),

-~ x
Similar calculations taking into account that Nl/z(p - B) = ap(o) and ”c - 0

yield
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i
[y
4
g )
f (A.8) v 2, 29(:7 B)oli (M)
' 1/2. 28 * 08 * , -
" - N 2h2 ()M - 8% (0" .oy (82 M) (0° - 0%)i0®
- 20, * *
kS - (2 n] .8 (log .81 26 - 8)
ﬁ - 2002 0 om0 ) xR - ) - e (1)
N ot qC' p ’7C- p p
'i'
K

i/2 /2 2
:: = (h (f7 /3)/M}\ - (C/M) h? (o ,3)\ (c -0)o
[2 -
R - (2¢/) b*(0.8) (log h(0.8)) ¥ P8 - 0) - e (1),
;l
: Combining (1.6), (3.2). (A.7) and (A.8) yields (A.3). O
Yy
"

Proof of Lemma A.3: Define
3
- ~2 -1.X M ] 2 ~1 2N M 2
. = N) . r 4 . s N = L' .
¢ % (NM) z1=1zj=r“i) £(x,.8}/f (x, B)1] (NM)} "o zl 1zJ €15
4 ‘
*ﬁ Then., since (NM)I’z(A - pB) = cp(l)v
\]
R
4
. i i72,72 T2 2 -1/2_.8 M B ‘225 -
4 (NM) (o o )/ = (NM) Xl=1 J.=1[{Yij f(x,.8)}/f (x,.A)
¥
_ _ 2, 28 12

)
L)
b e 172N oM ) 2, 29
:o (A.7) (NM) z. llj it YiJ fx, B (x;.8)
"
:‘ ~-{Y 13 -f(x,.8)) /f (xi.p)lo - op(l)
0 -
g - 2w o6 - ) -0 (1),
!
y
v\'
. completing the proof. O
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FIGURE 1

Schematic Representation of Estimated MOC for Small Concentrations




Iable #1

A% Three Estimates of the Variance Parameter 9

. : Monte-Carlo Bias

bea
(&7}

Log-linearized 0.: 0.001
3 Pseudo-likelihood

\( € = 1 0.045 0.022
. € = 2 0.000 0.001

% € = 3 0.004 0.000

ﬁ Variance Relative to Pseudo-likelihood with ¢ = 2
i M=2 M=4

Monte-Carlo Asymptotic Monte-Carlo Asymptotic

Log-linearized ) 2.85 4.93 1.71 1.87
Pseudo-likelihood
100y € =1 0.99 0.99

L € =3 1.00 1.00
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Table #2

100 x Mean Minimum Detectable Concentrations

M=2 M=y
. Replicates Replicates
@ Known 6 Estimated & Known 6 Estimated
Unweighted Least 13.106 13.106 9.173 9.173
Squares
Log-Linearized 3.937 4.346 2.718 2.785
Pseudo-likelihood
€ =1 - 4.216 - 2.809 j
€ = 2 3.827 3.934 2.715 2.722
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M Table #3

3
'¢?

,h Ratio of Monte-Carlo Variance of the Estimate of

.

. Minimum Detectable Concentration Relative to Pseudo-likelihood
[

é with ¢ = 2 Cycles

3

, M = 2 Replicates M = 4 Replicates

i

' 8 Known @ Estimated 8 Known @ Estimated
k)

3,

L)

o

3 ‘nweighted 14.90 8.46 18.83 13.72

C Least Squares
9

. Log-linearized 1.02 2.72 1.00 1.41
4

5 Pseudo-1likelihood

€ = 1 - 1.19 - 1.10
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Table #4

. Data for Example of Section 3

: Concentration (x) Response (Y)

v 0.000 1.700, 1.660, 1.950, 2.070

i 0.075 1.910, 2.270, 2.110. 2.390

? 0.:023 2.220, 2.230. 3.260, 2.920
0.135 2.800, 2.940, 2.380, 2.700

E U.183 2.780, 2.640. 2.710, 2.83C

E 0.250 3.540. 2.860, 3.150, 3.320

: 0.400 3.910, 3.830, 4.880. 4.2:0

ﬁ 0.3530 4.540. 4.470. 4.790, 5.680

* 0.750 6.060, 5.070, 5.000. 3.980
1.000 5.840. 5.790. 6.100, 7.810

? 1.375 7.310, 7.080. 7.060. 6.870

g 1.850 9.880, 10.120, 9.220, 9.960

‘

' 2.500 11.040, 10.460., 10.880, 11.650
3.250 13.510, 15.470, 14.210, 13.920

K 4.500 16.070, 14.670., 14.780. 15.210
6.000 17.340. 16.850, 16.740, 16.870

: 8.250 18.980, 19.850. 18.750, 18.510

; 11.250 21.666, 21.218. 19.790., 22.669

- 15.000 23.206, 22.239, 22.436, 22.597

. . 20.230 23.922, 24.871, 23.815, 24.871

" 27.500 25.748. 25.874, 24.907. 24.871

| 37.000 24.441, 25.874. 25.748, 27.270
50.000 29.580, 26.698. 26.336. 27.181 1
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’. Table #5 ,
i Zstimates of 6. o and X, based on exampie of Section 3
A :
&
4 Leas:’ Pseudo- Log- Modified
% Squares 1ixelihood €=2 Linearized Max. Likelihood
% ox, o | x, 6 X o
|
Y
Full . 13534 .0790 .47350 .0793 L4757 .0822 .4300
? Dupii- !
: cates !
1 & 2 .2230 .0728 . 7000 .0476 .9404 .0659 .71500
v 2 &3 .2385 .1333 .3500 .1870 . 1930 .1739 .2500
3 & 4 2313 1324 5750 .1112 .6940 .1104 .7000
:‘ 1 & 4 .1393 .0612 .5300 .0601 .5931 .0695 .5000
E 1 &3 1839 .0938 43500 .0981 .4233 .0909 .4750
)
. Mean .2116 .1031 .3230 .1008 .3692 .1021 .3330
; SD .0763 .0357 .1183 .0491 .2511 .0439 .1997
2 Note: Means and SDs are based only on the five reduced permutations of the ;
& data with duplicates.
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